LaTeX test

$$\frac{1}{2}\rho v^2+\rho gh+p = \text{constant}$$


$${c(H_3O^+)} = K_a^\ominus (\text{HA})\frac{c(\text{HA})}{c(A^-)}$$

$$\ln K^\ominus (T) = -\frac{\Delta_r H_m^\ominus (298K)}{RT} + \frac{\Delta_r S_m^\ominus (298K)}{R}$$


$$\int_{v_i}^{v_f}\mathrm{d} v = -u \int_{M_i}^{M_f} \frac{1}{M}\mathrm{d}M$$

$$v_f - v_i =u\ln\frac{M_i}{M_f}$$


$$E_{gravity} = -\frac{MmG}{R^2}$$

$$E_{k0}=\int_{R_0}^{\infty} -\frac{MmG}{R^2} \mathrm{d}R$$